THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH2010F Classwork 4

June 5, 2017

Name:

1. (30 points) Study the limit of the following functions at $(0,0)$.
(a)

$$
f(x, y)=\frac{x^{2} y^{2}}{|x|+y^{2}} .
$$

(b)

$$
g(x, y)=\frac{\sin x y}{x^{2}+y^{2}} .
$$

(c)

$$
h(x, y)=y \log \left(x^{2}+|y|\right) .
$$

Solution. (a) We have

$$
0 \leq f(x, y)=\frac{x^{2} y^{2}}{|x|+y^{2}} \leq \frac{x^{2} y^{2}}{y^{2}}=x^{2} .
$$

By Sandwich Rule,

$$
0 \leq \lim _{(x, y) \rightarrow(0,0)} f(x, y) \leq \lim _{(x, y) \rightarrow(0,0)} x^{2}=0
$$

so

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0 .
$$

(b) Along the sequence $\left(x_{n}, 0\right), x_{n} \downarrow 0, g\left(x_{n}, 0\right) \mid=0$ hence

$$
\lim _{\left(x_{n}, 0\right) \rightarrow(0,0)} g(x, y)=0 .
$$

On the other hand, along $\left(x_{n}, x_{n}\right), x_{n} \downarrow 0$,

$$
g\left(x_{n}, x_{n}\right)=\frac{\sin x_{n}^{2}}{2 x_{n}^{2}} \rightarrow \frac{1}{2}, \quad n \rightarrow \infty .
$$

So

$$
\lim _{\left(x_{n}, x_{n}\right) \rightarrow(0,0)} g(x, y)=\frac{1}{2} .
$$

There are two sequences converging to $(0,0)$ with different limits, so $\lim _{(x, y) \rightarrow(0,0)} g(x, y)$ does not exist. (We have used the fact that $\sin t / t \rightarrow 1$ as $t \rightarrow 0$.)
(c). Indeed, we have

$$
\log (|y|) \leq \log \left(|y|+x^{2}\right)<0,
$$

when x, y is close enough to $(0,0)$. Then,

$$
0 \leq|h(x, y)| \leq|y|\left|\log \left(|y|+x^{2}\right)\right| \leq|y||\log (|y|)|=|y \log (|y|)| .
$$

By Sandwich Rule,

$$
0 \leq \lim _{(x, y) \rightarrow(0,0)}|h(x, y)| \leq \lim _{(x, y) \rightarrow(0,0)}|y \log (|y|)|=0,
$$

so

$$
\lim _{(x, y) \rightarrow(0,0)} h(x, y)=0
$$

We have used the fact that $t \log t \rightarrow 0$ as $t \downarrow 0$.
2. (30 points) Find the iterated limits and limit of the function

$$
h(x, y)=\frac{x-y}{x+y}
$$

at $(0,0)$.
Solution. We first claim that

$$
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} \frac{x-y}{x+y}
$$

dost not exists. Indeed, when $y \neq 0$,

$$
\lim _{x \rightarrow 0} \frac{x-y}{x+y}=-1
$$

When $y=0$,

$$
\lim _{x \rightarrow 0} \frac{x-y}{x+y}=1
$$

So the limit dose not exist.
We can prove that

$$
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} \frac{x-y}{x+y}
$$

dost not exists by the same argument. Consequently, the limit of the function dose not exist.
3. (40 points) Consider the function

$$
F(x, y)=\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}}
$$

Show that

$$
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} F(x, y)=\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} F(x, y)=0
$$

but

$$
\lim _{(x, y) \rightarrow(0,0)} F(x, y)
$$

does not exist.

Solution.

$$
\begin{aligned}
& \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} F(x, y)=\lim _{y \rightarrow 0}(0)=0 \\
& \lim _{x \rightarrow 0} \lim _{y \rightarrow 0} F(x, y)=\lim _{x \rightarrow 0}(0)=0
\end{aligned}
$$

Therefore,

$$
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0} F(x, y)=\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} F(x, y)=0
$$

We show $\lim _{(x, y) \rightarrow(0,0)} F(x, y)$ does not exist by constructing two sequences converging to $(0,0)$ but with different limit of F : Consider $\left(x_{n}, y_{n}\right)=\left(\frac{1}{n}, \frac{1}{n}\right)$. Then $\left(x_{n}, y_{n}\right) \rightarrow(0,0)$ as $n \rightarrow \infty$, and $F\left(x_{n}, y_{n}\right)=\frac{\frac{1}{n^{4}}}{\frac{1}{n^{4}}}=1$, and hence

$$
\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}\right)=1
$$

Consider $\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\left(\frac{1}{n}, \frac{2}{n}\right)$. Then $\left(x_{n}, y_{n}\right) \rightarrow(0,0)$ as $n \rightarrow \infty$, and $F\left(x_{n}, y_{n}\right)=\frac{\frac{4}{n^{4}}}{\frac{5}{n^{4}}}=\frac{4}{5}$, and hence

$$
\lim _{n \rightarrow \infty} F\left(x_{n}^{\prime}, y_{n}^{\prime}\right)=\frac{4}{5}
$$

Therefore, $\lim _{(x, y) \rightarrow(0,0)} F(x, y)$ does not exist.

